The Time Course of Deafness and Retinal Degeneration in a Kunming Mouse Model for Usher Syndrome
نویسندگان
چکیده
Usher syndrome is a group of autosomal recessive diseases characterized by congenital deafness and retinitis pigmentosa. In a mouse model for Usher syndrome, KMush/ush, discovered in our laboratory, we measured the phenotypes, characterized the architecture and morphology of the retina, and quantified the level of expression of pde6b and ush2a between postnatal (P) days 7, and 56. Electroretinograms and auditory brainstem response were used to measure visual and auditory phenotypes. Fundus photography and light microscopy were used to measure the architecture and morphology of the retina. Quantitative real-time PCR was used to measure the expression levels of mRNA. KMush/ush mice had low amplitudes and no obvious waveforms of Electroretinograms after P14 compared with controls. Thresholds of auditory brainstem response in our model were higher than those of controls after P14. By P21, the retinal vessels of KMush/ush mice were attenuated and their optic discs had a waxy pallor. The retinas of KMush/ush mice atrophied and the choroidal vessels were clearly visible. Notably, the architecture of each retinal layer was not different as compared with control mice at P7, while the outer nuclear layer (ONL) and other retinal layers of KMush/ush mice were attenuated significantly between P14 and P21. ONL cells were barely seen in KMush/ush mice at P56. As compared with control mice, the expression of pde6b and ush2a in KMush/ush mice declined significantly after P7. This study is a first step toward characterizing the progression of disease in our mouse model. Future studies using this model may provide insights about the etiology of the disease and the relationships between genotypes and phenotypes providing a valuable resource that could contribute to the foundation of knowledge necessary to develop therapies to prevent the retinal degeneration in patients with Usher Syndrome.
منابع مشابه
Deafness and retinal degeneration in a novel USH1C knock-in mouse model.
Usher syndrome is the leading cause of combined deaf-blindness, but the molecular mechanisms underlying the auditory and visual impairment are poorly understood. Usher I is characterized by profound congenital hearing loss, vestibular dysfunction, and progressive retinitis pigmentosa beginning in early adolescence. Using the c.216G>A cryptic splice site mutation in Exon 3 of the USH1C gene foun...
متن کاملUsher syndrome: Animal models, retinal function of Usher proteins, and prospects for gene therapy
Usher syndrome is a deafness-blindness disorder. The blindness occurs from a progressive retinal degeneration that begins after deafness and after the retina has developed. Three clinical subtypes of Usher syndrome have been identified, with mutations in any one of six different genes giving rise to type 1, in any one of three different genes to type 2, and in one identified gene causing Usher ...
متن کاملAn Update on the Genetics of Usher Syndrome
Usher syndrome (USH) is an autosomal recessive disease characterized by hearing loss, retinitis pigmentosa (RP), and, in some cases, vestibular dysfunction. It is clinically and genetically heterogeneous and is the most common cause underlying deafness and blindness of genetic origin. Clinically, USH is divided into three types. Usher type I (USH1) is the most severe form and is characterized b...
متن کاملCaspase-3 inhibitor reduces apototic photoreceptor cell death during inherited retinal degeneration in tubby mice.
PURPOSE The tubby mouse, previously suggested as an animal model for the human Usher Syndrome type I, was used in an analysis of pathophysiological processes leading to the inherited retinal degeneration, also shown in Usher syndrome patients. To evaluate pathogenic mechanisms causing retinal degeneration in tubby mice, we examined the time course of apoptotic photoreceptor cell death. Apoptoti...
متن کاملThe usher syndromes.
Mutations in the gene (MYO7A) encoding myosin-VIIa, a member of the large superfamily of myosin motor proteins that move on cytoplasmic actin filaments, and in the USH2A gene, which encodes a novel protein resembling an extracellular matrix protein or a cell adhesion molecule, both cause Usher syndrome (USH), a clinically heterogeneous autosomal recessive disorder comprising hearing and visual ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 11 شماره
صفحات -
تاریخ انتشار 2016